100 research outputs found

    Improving Energy Efficiency and Security for Pervasive Computing Systems

    Get PDF
    Pervasive computing systems are comprised of various personal mobile devices connected by the wireless networks. Pervasive computing systems have gained soaring popularity because of the rapid proliferation of the personal mobile devices. The number of personal mobile devices increased steeply over years and will surpass world population by 2016.;However, the fast development of pervasive computing systems is facing two critical issues, energy efficiency and security assurance. Power consumption of personal mobile devices keeps increasing while the battery capacity has been hardly improved over years. at the same time, a lot of private information is stored on and transmitted from personal mobile devices, which are operating in very risky environment. as such, these devices became favorite targets of malicious attacks. Without proper solutions to address these two challenging problems, concerns will keep rising and slow down the advancement of pervasive computing systems.;We select smartphones as the representative devices in our energy study because they are popular in pervasive computing systems and their energy problem concerns users the most in comparison with other devices. We start with the analysis of the power usage pattern of internal system activities, and then identify energy bugs for improving energy efficiency. We also investigate into the external communication methods employed on smartphones, such as cellular networks and wireless LANs, to reduce energy overhead on transmissions.;As to security, we focus on implantable medical devices (IMDs) that are specialized for medical purposes. Malicious attacks on IMDs may lead to serious damages both in the cyber and physical worlds. Unlike smartphones, simply borrowing existing security solutions does not work on IMDs because of their limited resources and high requirement of accessibility. Thus, we introduce an external device to serve as the security proxy for IMDs and ensure that IMDs remain accessible to save patients\u27 lives in certain emergency situations when security credentials are not available

    Shake-n-shack : enabling secure data exchange between Smart Wearables via handshakes

    Get PDF
    Since ancient Greece, handshaking has been commonly practiced between two people as a friendly gesture to express trust and respect, or form a mutual agreement. In this paper, we show that such physical contact can be used to bootstrap secure cyber contact between the smart devices worn by users. The key observation is that during handshaking, although belonged to two different users, the two hands involved in the shaking events are often rigidly connected, and therefore exhibit very similar motion patterns. We propose a novel Shake-n-Shack system, which harvests motion data during user handshaking from the wrist worn smart devices such as smartwatches or fitness bands, and exploits the matching motion patterns to generate symmetric keys on both parties. The generated keys can be then used to establish a secure communication channel for exchanging data between devices. This provides a much more natural and user-friendly alternative for many applications, e.g., exchanging/sharing contact details, friending on social networks, or even making payments, since it doesn't involve extra bespoke hardware, nor require the users to perform pre-defined gestures. We implement the proposed Shake-n-Shack 1 system on off-the-shelf smartwatches, and extensive evaluation shows that it can reliably generate 128-bit symmetric keys just after around 1s of handshaking (with success rate >99%), and is resilient to real-time mimicking attacks: in our experiments the Equal Error Rate (EER) is only 1.6% on average. We also show that the proposed Shake-n-Shack system can be extremely lightweight, and is able to run in-situ on the resource-constrained smartwatches without incurring excessive resource consumption

    Using Wireless Link Dynamics to Extract a Secret Key in Vehicular Scenarios

    Get PDF
    Securing a wireless channel between any two vehicles is a crucial component of vehicular networks security. This can be done by using a secret key to encrypt the messages. We propose a scheme to allow two cars to extract a shared secret from RSSI (Received Signal Strength Indicator) values in such a way that nearby cars cannot obtain the same key. The key is information-theoretically secure, i.e., it is secure against an adversary with unlimited computing power. Although there are existing solutions of key extraction in the indoor or low-speed environments, the unique channel conditions make them inapplicable to vehicular environments. Our scheme effectively and efficiently handles the high noise and mismatch features of the measured samples so that it can be executed in the noisy vehicular environment. We also propose an online parameter learning mechanism to adapt to different channel conditions. Extensive real-world experiments are conducted to validate our solution
    • …
    corecore